Any sub-Riemannian metric has points of smoothness

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Any Sub-Riemannian Metric has Points of Smoothness

We prove the result stated in the title; it is equivalent to the existence of a regular point of the sub-Riemannian exponential mapping. We also prove that the metric is analytic on an open everywhere dense subset in the case of a complete real-analytic sub-Riemannian manifold.

متن کامل

A ug 2 00 8 Any Sub - Riemannian Metric has Points of Smoothness

We prove the statement in the title that is equivalent to the existence of a regular point of the sub-Riemannian exponential mapping. We also prove that the metric is analytic on an open everywhere dense subset in the case of a complete real-analytic sub-Riemannian mani-

متن کامل

On Smoothness of Sub-Riemannian Minimizers

This paper presents new conditions under which sub-Riemannian distance can be measured by means of a C 1 sub-Riemannian geodesic.

متن کامل

Sub - Riemannian

Take an n-dimensional manifold M . Endow it with a distribution, by which I mean a smooth linear subbundle D ⊂ TM of its tangent bundle TM . So, for x ∈ M , we have a k-plane Dx ⊂ TxM , and by letting x vary we obtain a smoothly varying family of k-planes on M . Put a smoothly varying family g of inner products on each k-plane. The data (M,D, g) is, by definition, a sub-Riemannian geometry. Tak...

متن کامل

Sub - Riemannian geometry :

Take an n-dimensional manifold M . Endow it with a distribution, by which I mean a smooth linear subbundle D ⊂ TM of its tangent bundle TM . So, for x ∈ M , we have a k-plane Dx ⊂ TxM , and by letting x vary we obtain a smoothly varying family of k-planes on M . Put a smoothly varying family g of inner products on each k-plane. The data (M,D, g) is, by definition, a sub-Riemannian geometry. Tak...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Doklady Mathematics

سال: 2009

ISSN: 1064-5624,1531-8362

DOI: 10.1134/s106456240901013x